

10MCF400Nd

MID FREQUENCY TRANSDUCER Preliminary Data Sheet

KEY FEATURES

- Very high efficiency mid-range driver
- Carbon fiber cone for optimum loading behaviour and low distortion
- Extremely linear frequency response
- 4" edgewound aluminium voice coil
- 800 W Program Power
- High efficiency and sensitivity
- FEA optimized neodymium motor structure
- Sealed cast aluminium frame
- Designed for high performance mid-frequency line array and horn loading applications

TECHNICAL SPECIFICATIONS

Nominal diameter	250 mm	10 in
Rated impedance		8 Ω
Minimum impedance		7,5 Ω
Power capacity*	400 W _{AES}	
Program power		800 W
Sensitivity	102 dB 1W / 1r	n @ Z _N
Frequency range	300 - 5.000 Hz	
Voice coil diameter	101,6 mm	4 in
BI factor	28,8 N/A	
Moving mass	0,038 kg	
Voice coil length	1	1,5 mm
Air gap height		10 mm

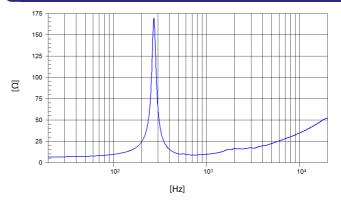
THIELE-SMALL PARAMETERS**

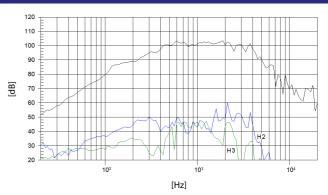
Resonant frequency, f_s	270 Hz
D.C. Voice coil resistance, R_e	5,9 Ω
Mechanical Quality Factor, Q_{ms}	14,5
Electrical Quality Factor, Q_{es}	0,47
Total Quality Factor, Q_{ts}	0,45
Equivalent Air Volume to C_{ms} , V_{as}	1,8 I
Mechanical Compliance, C_{ms}	9 μm / N
Mechanical Resistance, R_{ms}	4,4 kg / s
Efficiency, η_0	7,55 %
Effective Surface Area, S_d	0,038 m ²
Maximum Displacement, X_{max} ***	3,5 mm
Maximum Displacement, X _{max} ***	3,5 mm
Displacement Volume, V _d	133 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,5 mH

Notes:

* The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).


*** The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.


MOUNTING INFORMATION

Overall diameter	270 mm	10,63 in
Bolt circle diameter	248 mm	9,76 in
Baffle cutout diameter:		
- Front mount	227 mm	8,94 in
Depth	103 mm	4,05 in
Net weight	6,2 kg	13,67 lb
Shipping weight	6,6 kg	14,55 lb

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE & DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m